Monday 11 June 2012

Welcome to the IMA Maths Problem Solving Website

Question:

Prove that:
\[\int\limits_{-\infty }^{\infty }{{{e}^{-{{x}^{2}}}}dx=\sqrt{\pi }}\]

6 comments:

  1. Ok. One more attempt!
    Solution:
    Let \[I = \int\limits_{ - \infty }^\infty {{e^{ - {x^2}}}dx} \]
    Since x is a dummy variable we can also write: \[I = \int\limits_{ - \infty }^\infty {{e^{ - {y^2}}}dy} \]
    By multiplying the two together, we get:
    \[\begin{array}{c}
    {I^2} = \int\limits_{ - \infty }^\infty {{e^{ - {x^2}}}dx} \int\limits_{ - \infty }^\infty {{e^{ - {y^2}}}dy} \\
    = \int\limits_{ - \infty }^\infty {\int\limits_{ - \infty }^\infty {{e^{ - ({x^2} + {y^2})}}} dxdy}
    \end{array}\]
    Think of the x and y parameters as Cartesian coordinates, so this double integra;l is the integral over all the plane of
    \[{e^{ - ({x^2} + {y^2})}}\]
    Change to polar coordinates : \[x \to r\cos \theta ,\quad y \to r\sin \theta ,\quad dxdy \to rdrd\theta \] to get:
    \[\begin{array}{c}
    {I^2} = \int\limits_0^{2\pi } {d\theta \int\limits_0^\infty {r{e^{ - {r^2}}}dr} } \\
    = 2\pi \int\limits_0^\infty {r{e^{ - {r^2}}}dr} \\
    = \pi \int\limits_0^\infty {{e^{ - {r^2}}}d{r^2}} \\
    = \pi \int\limits_0^\infty {{e^{ - u}}du} \\
    = \pi
    \end{array}\]
    Therefore, since \[{I^2} = \pi \]
    we have \[I = \sqrt \pi \]
    or \[\int\limits_{ - \infty }^\infty {{e^{ - {x^2}}}dx} = \sqrt \pi \]

    ReplyDelete
  2. Test LaTex
    1. \[I = \int\limits_{ - \infty }^\infty {{e^{ - {x^2}}}dx} \]

    With dollar signs
    2. $I = \int\limits_{ - \infty }^\infty {{e^{ - {x^2}}}dx} $

    With backticks
    3. `\[I = \int\limits_{ - \infty }^\infty {{e^{ - {x^2}}}dx} \]`

    ReplyDelete
  3. Test with backticks around dollar signs:

    4. `$I = \int\limits_{ - \infty }^\infty {{e^{ - {x^2}}}dx} $`

    ReplyDelete
  4. Curly brackets test

    \[ \{I = \int\limits_{ - \infty }^\infty {{e^{ - {x^2}}}dx} \} \]

    \[ \\{I = \int\limits_{ - \infty }^\infty {{e^{ - {x^2}}}dx} \\} \]

    ReplyDelete
  5. Curly brackets test \[ \{I = \int\limits_{ - \infty }^\infty {{e^{ - {x^2}}}dx} \} \] \[ \\{I = \int\limits_{ - \infty }^\infty {{e^{ - {x^2}}}dx} \\} \] on

    ReplyDelete